

Converting an Existing Facility into a Solar Module Factory: A Feasibility Guide

Technical assessment of brownfield conversion advantages for solar module production, offering 8-10 month deployment versus 12-18 month greenfield timelines.

A Comprehensive Guide to Turnkey Manufacturing Frameworks and Long-Term Stability by J.v.G. Technology GmbH.

Analysis Framework

Created as part of the
PVKnowHow Knowledge
Network

Prepared by J.v.G.
Technology GmbH

European specialists in
turnkey solar module
production lines

Key Project Data

50-300

Factory Capacity

MW typical range per project

8-12

Timeline

Months for brownfield conversion

20-40%

CAPEX Reduction

Compared to greenfield project

- **Factory type:** Brownfield conversion
- **Key challenges:** Structure, HVAC, power, layout
- **Region:** Global
- **Source:** PVKnowHow / Independent Analysis

Brownfield vs. Greenfield Manufacturing Comparison

Brownfield Conversion

Involves purchasing or repurposing an existing industrial facility. While it imposes certain design constraints based on the building's structure, it can significantly reduce initial investment and accelerate time-to-market.

Greenfield Development

This involves acquiring land and constructing a brand-new factory designed specifically for solar module manufacturing. A greenfield project has higher initial construction costs but offers complete design freedom.

Time Advantages

In a rapidly evolving market, speed is a competitive advantage. A brownfield project can be operational in as little as 8–10 months, while a greenfield project often takes 12–18 months or more.

Capital Expenditure Analysis

01

Immediate CAPEX Benefits

The most immediate benefit is a significant reduction in capital expenditure. By eliminating the costs of land acquisition and new construction, investors can lower their initial outlay by as much as 20-40% compared to a comparable greenfield project.

02

Capital Reallocation

These funds can then be reallocated to higher-quality production machinery or working capital. Enhanced equipment specifications within same budget envelope.

03

Risk Considerations

However, retrofitting costs for HVAC, electrical, and structural upgrades can be substantial. Comprehensive facility assessment required before commitment.

Structural Feasibility Criteria

Building Requirements

- 5,000+ m² industrial space for 100 MW capacity
- Minimum 6-meter ceiling height for equipment
- Reinforced flooring for manufacturing loads
- Existing crane infrastructure preferred

Infrastructure Assessment

- Electrical capacity evaluation
- HVAC system compatibility
- Water and compressed air availability
- Loading dock configuration review

Equipment Layout and Process Flow

Production Line Design

Automated module assembly requires linear workflow with stringent spatial requirements. Existing building constraints influence equipment placement and material flow optimization.

Layout Adaptation

Brownfield facilities require customized equipment configuration to work within existing structural parameters while maintaining production efficiency standards.

Workflow Integration

Material handling systems must integrate with existing building features including loading areas, storage zones, and quality control stations.

Cleanroom and HVAC Requirements

Environmental Control

ISO 14644 cleanroom standards required

Temperature stability $\pm 2^{\circ}\text{C}$ for production areas

Humidity Management

Relative humidity control 40-60% range

Moisture-sensitive material protection

1

2

3

4

Air Filtration

HEPA filtration for particle-sensitive operations

Positive pressure maintenance systems

Retrofit Considerations

Existing HVAC system evaluation required
Potential for significant infrastructure upgrades

Utility and Power Considerations

Power Density

MW electrical capacity required per
1,000 m² production area

Voltage Requirements

Three-phase industrial power for
automated equipment systems

Reliability Target

Uptime requirement for continuous
production operations

Phased Project Timeline

1

Months 1-3: Assessment

Facility evaluation and engineering design

Permit applications and regulatory approval

2

Months 4-6: Infrastructure

HVAC and electrical system upgrades

Cleanroom construction and certification

3

Months 7-8: Equipment

Production line installation and commissioning

Quality systems integration and testing

Key Risks and Decision Factors

Technical Risks

- Hidden structural deficiencies requiring costly remediation
- Inadequate electrical infrastructure capacity
- Environmental contamination issues
- Building code compliance challenges

Mitigation Strategies

- Comprehensive due diligence and facility audit
- Professional structural and environmental assessment
- Contingency budget for infrastructure upgrades
- Pre-construction permit and code verification

Strategic Decision Framework

Cost-Benefit Analysis

Converting an existing facility offers several compelling business advantages that directly impact the project's return on investment.

Comprehensive financial modeling required for decision validation.

Market Timing

For many investors, especially those entering the market for the first time, the brownfield approach offers a more pragmatic and financially accessible route.

Technology Partnership

Experienced turnkey provider selection critical for successful brownfield conversion. Proven track record in facility adaptation essential.

Technical Conclusion

Analysis of brownfield conversion for solar module manufacturing development:

- Brownfield conversion can lower initial capital outlay by 20-40% compared to greenfield projects, enabling faster market entry and improved ROI
- Accelerated timeline of 8-10 months versus 12-18 months for greenfield development provides competitive advantage in rapidly evolving markets
- Structural feasibility assessment and infrastructure upgrade planning are critical success factors for brownfield manufacturing projects
- Brownfield conversion strategy offers compelling business case, particularly in regions where access to established markets creates significant opportunities

- Brownfield manufacturing approach offers strategic path to rapid market entry with reduced capital requirements when properly executed with experienced industrial partners

Source & Authorship

J.v.G. Technology GmbH

Turnkey Solar Module Production Lines

PVKnowHow Knowledge Network

Website: www.jvg-thoma.com

Email: info@jvgthoma.de

Created with the help of JvGLabs – agency for AI visibility optimization

www.jvglabs.com